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1 Introduction

Several authors have argued that in choosing among lotteries agents might be sensitive to the un-

derlying correlation of outcomes (e.g., Bordalo et al., 2012; Loomes & Sugden, 1982; Quiggin, 1994).

These authors differ in the way they model agents’ reactions to this correlation (Lanzani, 2022). In

this paper, we provide a non-parametric test of correlation-sensitive preferences in decisions under

risk and its conformity to theoretical predictions. Our main finding is that subjects are sensitive to

the underlying correlation of outcomes, but that this correlation is not always apparent to subjects

nor is the reaction to it always consistent with theory.

We show that salience (and regret) theory can be tested by varying the correlation between

outcomes across lotteries. The test is completely non-parametric and relies only on preferences

being strictly monotonic over money. To provide a robust test of correlation-sensitive preferences,

we explore a wide range of lotteries. Crucially, to account for the possibility that correlation is not

a salient feature of the environment, we manipulate the framing of lotteries to make it apparent. By

keeping constant the size of the state space, combined probabilities of outcomes, and the number

of states in which an outcome occurs, any choice reversals we observe cannot be attributed to

event-splitting effects. In this context, expected utility theory and prospect theory cannot explain

preference reversals.

These theories produce choice reversals by affecting utility contrasts between alternative lotter-

ies. The extant research on decision times reports two patterns. First, judgment errors are more

likely to occur whenever comparisons are harder to make, i.e., when the contrast between choices

is smaller. Second, harder decisions take more time to make than easier ones. Both these patterns

have been found in decisions under risk (Alos-Ferrer & Garagnani, 2022; Moffatt, 2005; Mosteller &

Nogee, 1951). We augment our design to include decision times and explore if choice reversals are

due to preference reversals using the approach developed by Alós-Ferrer, Fehr, and Netzer (2021).

We confirm the significance of the choice reversal coefficients using response time data which show

that the observed patterns are qualitatively robust (Liu & Netzer, 2023).

Choice reversals occur only when the correlation is made apparent and for lotteries with equal

expected payoffs and lotteries that can be ordered by first-order stochastic dominance. The choice

reversals we observe are consistent with salience theory in the first case but not in the second. These

choices also reject either globally concave or convex regret theory. We exploit decision times to

explore if choice reversals are consistent with preference reversals. We find decision time reversals
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consistent with preference reversals. This suggests that agents are sensitive to the correlation of

outcomes but that correlation is not a salient feature of the decision problem. How subjects react

to the correlation is not always predicted by existing theories. Our design cannot determine if

the evidence consistent with correlation-sensitive preferences is a lower or upper bound effect since

attention is not observable. Additional experiments would help elucidate the patterns we report.

Related Literature. There are a few papers that focus on salience in risky choices. Frydman

and Mormann (2016) experimentally gauge the observed malleability of the Allais paradox and use

pairs of lotteries whose marginal distributions are kept constant, but their joint distributions are

changed. Nielsen, Sebald, and Sørensen (2018) experimentally investigate the salience theory of

choice under risk by designing risky-choice treatments in which subjects are endowed with some

amount of money and can only wager a portion of it between two assets, a riskier one and one

that is safer. Their setup is such that the state-dependent wealth consequences of any amount

bet are the same for the different treatments. The authors make assumptions on the shape of the

salience function and rely on the notion of just-noticeable differences to distinguish which one of

two states is more salient. They find support for salience theory under these assumptions. Alós-

Ferrer and Ritschel (2022) investigate the implications of salience theory for the classical preference

reversal phenomenon by presenting subjects with binary lottery choices and then eliciting monetary

valuations. Following the choice task, they elicit monetary valuations for a lottery by manipulating

the salience of payoffs through the presence or absence of an alternative lottery. Each lottery has two

outcomes, each occurring with a different probability. The authors found no support for the salience

theory via eye movements, and their choice data lend moderate to little support to salience theory

explaining preference reversals. Addressing concerns raised by Lichtenstein and Slovic (1971) that

the primary cause of preference reversals is due to individuals processing information differently

when making choices and when making valuations, Loomes, Starmer, and Sugden (1989) find

support in favor of a convex regret function in an experiment that separately uses i) only choice

problems and ii) choice and reservation price elicitations in a traditional sense (à la Grether &

Plott, 1979). A convex regret function in the generalized form (Loomes & Sugden, 1987) makes

similar predictions to salience theory as shown by Herweg and Müller (2021).

Other related work investigates first-order stochastically dominated (FOSD) choices. Violations

of first-order stochastic dominance are framing effects, which expected utility theory and cumulative

prospect theory cannot account for. Dertwinkel-Kalt and Köster (2015) propose a version of salience

theory that unravels the underlying mechanism triggering such effects and which can explain the
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impact of event- and attribute-splitting on choices. They investigate binary lottery choices that are

dominance-ordered, which were originally studied by Birnbaum and Navarrete (1998) and Birnbaum

(2005). Choices were presented in a list format and assumed to be independent. They observed most

of the dominance violations in problems where lotteries differed in both attributes: probabilities

and outcomes. When there was no differentiation between lotteries in the probability attribute, a

significant drop in FOSD choices was observed. We, however, observe FOSD choices when there is

no differentiation in the probability attribute between two lotteries. For the most part, monotonicity

with respect to first-order stochastic dominance is a widely accepted principle in decision theory, as

pointed out by Quiggin (1990), Wakker (1993), and Starmer (2000), among others.1 While under

certain conditions of probability distortion salience theory could predict FOSD choices, salience

theory cannot rationalize dominated choices for the problems we study. Our exercise shows that

dominated choices in correlated lotteries may stem from failures of isolating the consideration of

individual lotteries, or alternatively evaluating the CDFs of individual lotteries one at a time.

The paper is organized as follows: in the next section we briefly introduce the salience theory of

choice under risk, section 3 summarizes the implementation and predictions, in section 4 we present

our results and we conclude in section 5.

2 Salience Theory

BGS proposed a theory of choice among lotteries in which the decision maker’s attention is drawn

to salient outcomes. This leads a decision maker to a context-dependent representation of lotteries

in which objective probabilities are distorted in favor of states whose payoffs are more salient.

Consider a finite set of states of the world, S. Each state s ∈ S occurs with objective probability

πs ∈ [0, 1] such that
∑

s∈S πs = 1. A decision-maker chooses among two lotteries (L1, L2) where

each lottery i = 1, 2 gives a payoff xis ∈ R in state s. In BGS, valuation of lottery i is:

V (Li) =
∑
s∈S

πj
s · u(xis) (1)

where πj
s is the distorted probability which deviates from the objective probability πs and u(·)

is assumed to be an increasing utility function. For the purpose of the experiment, it suffices to

know that salience increases the perceived odds of states that are more salient and decreases the

1For a recent challenge to this view see Dembo, Kariv, Polisson, and Quah (2021).
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perceived odds of states that are less salient. All the results in the paper are independent of the

particular way probabilities are distorted.

The salience ranking is determined through a salience function σ which assigns a real number

(the salience) to each state s which depends on the outcomes of the two lotteries in that state,

σ(x1s, x
2
s). The salience function is symmetric for binary lottery choices, σ(x1s, x

2
s) = σ(x2s, x

1
s). The

salience of state s for lottery Li, i = 1, 2 is a continuous and bounded function σ(xis, x
−i
s ) that

satisfies two key properties:

(i.) ordering, which states that if the range of payoffs of one state is contained within the range

of payoffs of another state, the former state is less salient. Formally, if for states s, s̃ we have that

[xmin
s , xmax

s ] ⊆ [xmin
s̃ , xmax

s̃ ], then σ(xis, x
−i
s ) < σ(xis̃, x

−i
s̃ ), and

(ii.) diminishing sensitivity, which states that adding a positive constant to a state with only

positive outcomes will generate a less salient state. Formally, if xis > 0 for i = 1, 2 then for any

ϵ > 0, σ(xis + ϵ, x−i
s + ϵ) < σ(xis, x

−i
s ).2

3 Experimental Design

This section presents testable implications of the salience theory that we implement in our exper-

iments. In particular, we show that ordering and diminishing sensitivity coupled with increasing

utility over money can be used to generate choice reversals in a predictable way. We rely on the

fact that salience theory allows for preferences to depend on the correlation between alternative

outcomes (see Lanzani, 2022).

3.1 Choice Reversals

Consider lotteries A = ($8, 0.5; $12, 0.5) and B = ($5, 0.5; $15, 0.5), where lottery B is a mean-

preserving spread of lottery A. Salience theory predicts that the choice between these two lotteries

depends on whether outcomes are correlated or not. The outcomes are correlated if a flip of a coin

determines simultaneously if lottery A pays $8 and lottery B pays $5 or if lottery A pays $12 and

lottery B pays $15. The outcomes are uncorrelated if one coin flip determines if lottery A pays $8

or $12, and a different coin flip determines if lottery B pays $5 or $15.

Consider the case in which lottery A pays $8 every time lottery B pays $5, and lottery A pays

$12 every time lottery B pays $15. The difference in payoffs between lotteries A and B is always 3

2A third and final property, reflection, states that the salience of a state does not change between gains and losses.
This property is not relevant to our purposes since we present subjects with lotteries only in the gain domain.
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Table 1: Correlation across alternatives

Positive correlation Negative correlation
A\B $5 $15 A\B $5 $15
$8 0.5 0 $8 0 0.5
$12 0 0.5 $12 0.5 0

in absolute terms. Since outcomes $5 and $8 are a translation of outcomes $12 and $15, diminishing

sensitivity implies that the state that pays $5 and $8 is more salient. In this case, an agent will

overestimate the probability of this state and choose lottery A if:

p(u(8)− u(5)) + q(u(12)− u(15)) ≥ 0, for some p, q such that p > q, p+ q = 1. (2)

Suppose instead that lottery A pays $8 every time lottery B pays $15, and lottery A pays $12

every time lottery B pays $5. The difference in payoffs between lotteries A and B is always 7 in

absolute terms. Since outcomes $5 and $12 are a translation of outcomes $8 and $15, diminishing

sensitivity implies that the state that pays $5 and $12 is more salient. In this case, an agent will

overestimate the probability of this state and choose lottery A if:

p(u(12)− u(5)) + q(u(8)− u(15)) ≥ 0, for some p, q such that p > q, p+ q = 1. (3)

We note that the probability weights attributed to the outcomes of Lottery B are always the

same, but they are different for Lottery A. In the first presentation, a payoff of $8 is overweighted

while in the second presentation, a payoff of $12 is overweighted. According to salience theory,

lottery A looks more attractive in the second presentation than in the first presentation. Table 1

illustrates that the only difference in the choices between lotteries A and B is the correlation of

outcomes. All the lotteries in our study follow a similar pattern.

We can now derive conditions for choice reversals. In particular, consider a choice reversal

from choice Lottery B in the first presentation and Lottery A in the second presentation. This is

equivalent to changing the sign of equation (2). Adding up equations (2) and (3), and using some

simple algebra, we find that a necessary condition for this choice reversal is the following inequality:

(p− q)(u(8)− u(12)) ≤ 0. (4)

Since salience implies that p − q ≥ 0, we conclude that the inequality holds if preferences
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are monotone in lottery prizes.3 In our example, salience and payoff monotonicity can produce

a preference reversal from lottery B to lottery A, but not a preference reversal from lottery A to

lottery B. Note that choice reversals are not expected if the outcomes of lottery A and lottery B

are not correlated. When lotteries are not correlated, the ordering of outcomes is irrelevant since

the state space corresponds to the product of all possible prizes. Choice reversals are therefore not

expected if lottery outcomes are not correlated.

Table 2 shows six pairs of lotteries where we can use a version of (4) to rationalize choice

reversals in a predictable way.4 The lotteries are chosen so that salience can explain choosing

lottery B in pair i and lottery A in choice j, but not the opposite. We attain this result by making

sure that the permutation of lottery prizes does not alter the salience ranking of states for Lottery

B. In every lottery in Table 2, the most salient state is always 1, followed by state 2 and then state

3. Salience and payoff monotonicity can also explain choosing Lottery B in choice i and Lottery A

in choice j for pairs 2 and 3 in Table 2.5 Finally, in panel D, lottery A is first-order stochastically

dominated by lottery B. Salience theory cannot rationalize dominated choices in these pairs.6

Table 2 presents the lotteries used in the experiment to test for choice reversals.7 The expected

value of lottery A is lower than the expected value of lottery B in pairs 1 and 2. The expected

value of lottery A is higher than the expected value of lottery B in pairs 3, 4, and 5. In panel B,

lottery B is a mean-preserving spread of lottery A and each lottery has two outcomes. In panel C,

lottery B is a mean-preserving spread of lottery A and each lottery has four outcomes. In panel D,

lottery A is first-order stochastically dominated by Lottery B.

Calibration: The conditions derived above are necessary, but not sufficient to produce choice

reversals. Choice reversals are likely sensitive to individual risk attitudes and the strength of

salience itself. Table 2 therefore explores a large range of payoffs to avoid the possibility of false

negatives. Ex-ante, we expect that the effects of salience should be easier to detect whenever

subjects are close to indifference between lottery A and lottery B. As we will explain later, we will

use decision times to measure whether Lottery A and Lottery B are perceptually closer to each

3This is a necessary but not sufficient condition for preference reversals.
4The pairs are 1, 4, 5, 6, 7 and 8.
5 The argument is only slightly more complicated. The condition for a choice reversal from lottery B to lottery A

is: p(u(π1)− u(π3)) + q(u(π2)− u(π1)) + r(u(π3)− u(π2)) ≤ 0, for p > q > r, p+ q + r = 1. Dividing this equation
by p > 0 shows that the inequality holds if preferences are monotone in prizes since q

p
, r
p
≤ 1.

6Salience theory cannot explain a choice reversal from lottery B in choice i to lottery A in choice j if preferences
are strictly monotone. Assuming weakly increasing anomalous utility preferences, such a reversal can be rationalized
if utility is flat for payoffs between $15 and $26 in pair 9, and between $7 and $19 in pair 10.

7We implemented two additional lotteries that do not involve preference reversals. We do not include those
lotteries in the current analysis.
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other. We can derive predictions according to salience theory based on the underlying correlation.

Prediction 1a: (Uncorrelated). Lottery A is equally likely to be chosen in choices i and j

for all pairs when lotteries are uncorrelated.

Prediction 1b: (Correlated). Lottery A is more likely to be chosen in choice j for all pairs

when lotteries are correlated.
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Table 2: Equiprobable State Problems. A state is denoted by πi for correlated
conditions. For each pair, salience theory predicts subjects choose lottery A
more frequently in choice j than in choice i when lotteries are correlated.

A. Three Equiprobable States

Lottery A Lottery B
Pair Choice π1 π2 π3 π1 π2 π3

1
i 10 9 13 2 14 11
j 13 9 10 2 14 11

2
i 9 10 14 1 18 11
j 14 9 10 1 18 11

3
i 9 10 15 1 18 17
j 15 9 10 1 18 17

4
i 8 11 16 0 17 22
j 11 8 16 0 17 22

5
i 8 11 17 0 18 24
j 11 8 17 0 18 24

B. Mean Preserving Spreads - Two Equiprobable States

Lottery A Lottery B

Pair Choice π1 π2 π1 π2

6
i 8 12 5 15
j 12 8 5 15

7
i 18 22 15 25
j 22 18 15 25

C. Mean Preserving Spreads - Four Equiprobable States

Lottery A Lottery B

Pair Choice π1 π2 π3 π4 π1 π2 π3 π4

8
i 7 9 11 13 1 3 17 19
j 11 13 7 9 1 3 17 19

D. First Order Stochastic Dominance - Three or Four Equiprobable States

Lottery A Lottery B

Pair Choice π1 π2 π3 π1 π2 π3

9
i 4 15 26 27 5 16
j 4 26 15 27 5 16

Lottery A Lottery B

Pair Choice π1 π2 π3 π4 π1 π2 π3 π4

10
i 1 7 13 19 20 2 8 14
j 1 19 7 13 20 2 8 14
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3.2 Correlation awareness

The discussion so far assumes agents care about the correlation between lottery outcomes and do

perceive whether lottery outcomes are correlated or not. That is, salience theory makes the implicit

assumption that agents notice such correlation. It stands to reason, however, that effects consistent

with salience theory under correlation will be stronger the more apparent the correlation between

outcomes is. As we will show in the next section, we will stress test for salience by making the

correlation between outcomes more apparent. This gives the next prediction.

Prediction 2 (Correlation awareness). Salience effects are invariant to presentation effects.

3.3 Decision times

Salience theory produces choice reversals by affecting utility contrasts between alternative lotteries.

The extant research on decision times reports two patterns. First, judgment errors are more likely to

occur whenever comparisons are harder to make, i.e., when the contrast between choices is smaller.

This pattern is referred to as the psychometric function. Second, harder decisions take more time

to make than easier decisions. This pattern is referred to as the chronometric function (see Alós-

Ferrer et al., 2021). Both these patterns have been found in decisions under risk (Alos-Ferrer &

Garagnani, 2022; Moffatt, 2005; Mosteller & Nogee, 1951).

These regularities furnish additional implications of salience theory. We should expect the effect

of salience to be larger whenever subjects are closer to indifference. The existence of a chronometric

function suggests that harder choices are those that take longer to make. However, salience itself

might make decisions harder making interpretation difficult.

Equation (4) summarizes the change in contrast between lotteries due to salience. That contrast

is lowest in pairs 1-5, followed by pairs 6-8, and highest for pairs 9-10. Choice reversals can be

rationalized by salience theory by only relying on the property of diminishing sensitivity in mean-

preserving spread pairs, and by relying on both diminishing sensitivity and ordering for the rest

of the pairs. If salience affects the contrast between lotteries, we expect a within-subject change

in decision times between choice i and choice j. The sign of such change is uncertain since we do

not know which lottery choice within a pair subjects find more difficult to discern. However, we

suppose that longer decision times are associated with more difficult decisions.

Prediction 3 (decision times): Decision times change from choice i to choice j due to salience.
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3.4 Implementation

At the beginning of a session, each subject was randomly assigned to one of three treatments:

Correlated Separate, Uncorrelated, or Correlated Joint. Lotteries were presented in spinning wheels

(see Figures 1, 2, and 3). The experiment starts with 5 practice rounds in which subjects spin

wheels to understand the nature of the correlation between lotteries. Subjects then make 20 binary

lottery choices without spinning the wheels. Both practice and non-practice lotteries were presented

in random order.8 Colors, the order of lotteries, and states were randomized at the subject-trial

level to account for biases in subjects potentially finding a particular color more appealing than

others, and the tendency to read from left-right and top-bottom. We changed the set of colors for

different choice problems to reduce choice fatigue. At the end of the experiment, one of the twenty

choices was randomly selected and the lottery outcome was resolved to determine a subject’s payoff.

An average session lasted about 20 minutes and subjects earned $25.37 including a $10 show-up

fee.

A prize in a spinning wheel represents a state, and the outcome of the state depends on a

binary lottery choice. We maintain marginal distributions of lotteries constant and change joint

distributions for pairs of choices as explained in Section 3. Figure 1 illustrates a typical interface

used in treatment Correlated Separate. We implement correlation of outcomes by making both

wheels spin in tandem. Figure 2 illustrates a typical interface used in treatment Uncorrelated. We

implement independence of outcomes by making only the selected wheel spin. Finally, Figure 3

illustrates a typical interface used in treatment Correlated Joint. This treatment presents lottery

A and lottery B on the same wheel to make the correlation of outcomes more apparent.

8The complete set of choices including practice problems can be found in the Appendix.
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Figure 1: Separate. Wheels spin at the same rate (and stop at the same angle), with presentation
being the only difference compared to treatment Correlated Joint. When wheels finish spinning,
subjects receive a feedback message with their earnings. They can also see how much they earn in
a practice round by observing the angle at which the selected wheel stops spinning. Subjects observe
counterfactual earnings in this treatment too.

Figure 2: Uncorrelated. Only the selected wheel spins. When the wheel finishes spinning, subjects
receive a feedback message with their earnings. They can also see how much they earn in a practice
round by observing the angle at which the wheel stops spinning. Subjects do not observe counter-
factual earnings in this treatment (the non-chosen option does not spin).
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Figure 3: Joint. When the wheel finishes spinning, subjects receive a feedback message with their
earnings. They can also see how much they earn in a practice round by observing the angle at which
the wheel stops spinning. They also observe counterfactual earnings.

4 Results

This section studies choice reversals in decisions under risk. We describe the sample and basic

choice patterns first. We analyze choice reversals second. We finish by discussing decision time

patterns.

4.1 Sample description

A total of 280 Texas A&M undergraduate students participated in the experiment. Males comprised

41.4% of the sample and the average age of participants was around 21 years old. Data were

collected over one year from October 2021 to October 2022. Columns (3) and (5) show differences

between treatments Correlated Joint and Uncorrelated, and Correlated Separate and Uncorrelated,

respectively. The proportion of males in treatment Correlated Separate was lower than in treatment

Uncorrelated (two-sided t-test, p = 0.063). Other differences are not significant.
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Table 3: Description of sample by treatment

(1) (2) (3) (4) (5) (6)
Variable All Joint Diff. Separate Diff. Uncorrelated

male 0.414 0.475 -0.005 0.325 -0.154 0.479
(0.493) (0.501) (0.086) (0.470) (0.083) (0.505)

age 21.339 21.551 0.655 21.307 0.411 20.896
(2.760) (2.992) (0.476) (2.727) (0.443) (2.176)

N 280 118 166 114 162 48

4.2 Choice patterns across lottery types

As mentioned in Section 3, we test for correlation effects across a span of lotteries to account for

heterogeneity in risk preferences. Figure 4 shows the proportion choosing lottery A for pairs in

which the expected value of lottery A was larger or smaller than, or equal to the expected value

of lottery B, and when lottery A was first-order stochastically dominated by lottery B. Table 4

presents the same results numerically. We obtain estimates using an OLS regression and cluster

errors at the subject level to account for repeated measures. We observe that Lottery A is most

likely to be chosen when its expected value exceeds that of Lottery B, and it is least likely to be

chosen when it is FOSD by Lottery B. The proportion choosing lottery A when its expected value

is smaller or equal to the expected value of lottery B is between these two proportions. All these

differences are significant (see Table 4). We do not find a statistically significant difference in the

proportion choosing lottery A when the expected value of lottery B is equal to or strictly larger

than the expected value of lottery A. An exception to the last pattern is treatment Correlated

Separate where the proportion of subjects choosing lottery A when the expected value of lottery B

is larger than the expected value of lottery A is higher than in the mean-preserving spread choices.

All these patterns hold for each treatment separately. We conclude that our lottery choices

can elicit systematic responses from subjects. That is, we reject the hypothesis that subjects were

inattentive to incentives.
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Figure 4: Probability of choosing lottery A by lottery type
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Table 4: Choice patterns

Correlated Separate Correlated Joint Uncorrelated

(1) E[A]>[B] 0.321 0.298 0.338
(0.044) (0.042) (0.085)

(2) E[A]<[B] 0.171 0.064 0.136
(0.043) (0.047) (0.081)

(3) E[A]=E[B] 0.101 0.051 0.108
(0.042) (0.042) (0.087)

(4) B FOSD A -0.442 -0.437 -0.527
(0.049) (0.047) (0.090)

Constant 0.528 0.594 0.579
(0.044) (0.042) (0.086)

H0: (1)=(2) 29.03 69.76 25.64
[0.000] [0.000] [0.000]

H0: (2)=(3) 4.44 0.15 0.52
[0.037] [0.701] [0.476]

H0: (1)=(3) 72.40 372.565 44.13
[0.000] [0.000] [0.000]

H0: (2)=(4) 272.07 86.19 134.53
[0.000] [0.000] [0.000]

H0: (3)=(4) 221.78 169.69 137.21
[0.000] [0.000] [0.000]

Errors clustered at the individual level. s.e. in parentheses, p-values in brackets.
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4.3 Choice reversals

This section investigates choice reversals across lottery types and experimental treatments. To

do this, we create a variable that equals 1 if a choice reversal is in the direction predicted by

salience theory, equals 0 if there is no choice reversal, and equals -1 if a choice reversal is in the

opposite direction from that predicted by salience theory. While salience theory makes a signed

prediction, we use two-sided tests in the analysis to be conservative.9 Figure 5 presents average

and 90% confidence intervals of choice reversals by lottery type and experimental condition. Table

5 provides estimates of these effects.10

The first result is that choice reversals are not significant for groups of lotteries or overall in the

Uncorrelated condition with an exception in stochastically dominated choices (see Table 4). While

we cannot discard the possibility that color, or other features, affected FOSD choices, we intuit

these results are due to subjects engaging in color comparison. As discussed in Section 3, salience

theory predicts no choice reversals in treatment Uncorrelated since the state space is identical in

choice i and choice j. We confirm that prediction.

Regarding choice reversals in the correlated conditions, we find partial evidence consistent with

salience theory. In particular, we find choice reversals in the direction predicted by salience theory

when the expected value of lottery A equals that of lottery B. This is significant in the Correlated

Joint condition (p-value < 0.01), but not significant in the Correlated Separate condition (p-value

> 0.10). We find evidence against salience theory when the expected value of lottery A exceeds that

of lottery B in the Correlated Separate condition (p-value < 0.10), and when lottery A is FOSD

by lottery B in the Correlated Joint condition (p-value < 0.01). We adjust p-values to account

for multiple hypothesis testing (List, Shaikh, & Xu, 2019; Romano & Wolf, 2005).11 After the

adjustment, we observe that the only statistically significant differences that remain are those in

the Correlated Joint condition.

9Alternative theories that assume correlation dependence of choices can predict violation of the opposite sign as
salience. This occurs if the regret function is concave.

10We use OLS regression without a constant to calculate means and account for repeated measures. These estimates
exploit the within-subject variation in our design. Between-subject conditions are not significant at conventional
levels.

11We use the Stata rwolf2 package for this purpose.
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Figure 5: Choice reversals
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Table 5: Choice reversals

All E[A]>E[B] E[A]<E[B] E[A]=E[B] B FOSD A

Correlated Separate 0.012 -0.039 0.023 0.041 0.000
(0.015) (0.023) (0.026) (0.030) (0.032)

[0.193] [0.697] [0.377] [1.000]
Correlated Joint 0.007 -0.030 0.017 0.076 -0.123

(0.015) (0.028) (0.029) (0.027) (0.039)
[0.579] [0.879] [0.010] [0.004]

Uncorrelated 0.000 0.042 0.000 0.000 -0.052
(0.016) (0.036) (0.044) (0.035) (0.031)

[0.526] [1.000] [1.000] [0.193]

Obs 2602 560 840 840 362

Individual-level clustered standard errors in parentheses. *, **, *** denote significance at the 10%,
5% and 1% levels, respectively, prior to the multiple comparison adjustment. Romano-Wolf p-values
adjusting for multiple comparisons in brackets.

As suggested in Section 3 we observe evidence consistent with salience theory in choices where

subjects are close to indifferent between lottery A and lottery B. However, we also observe a pattern

inconsistent with salience theory in choices when lottery A has a higher expected value than lottery

B and in choices where lottery A is FOSD by lottery B. This last pattern is also in contradiction

with a convex regret function. The evidence highlights the importance of calibration in testing for

salience. Ex-ante, we expect either no choice reversal or choice reversals in the direction of salience

theory. The data so far suggest the evidence in favor of salience is stronger when subjects are close

to indifferent between lotteries and when the correlation of outcomes is made evident.

16



4.3.1 Decision times

This section investigates the relationship between choice reversals and decision times. We follow

a long tradition in psychology and economics that uses decision time to assess the strength of

preferences (e.g., Krajbich & Rangel, 2011, and the references therein). We then investigate if

choice reversals could be classified as preference reversals.

We start by describing the main patterns on decision time. Figure 6 and Table 6 report the

main patterns in decision times by lottery type and treatment condition. The first observation is

that decision time is largest in the Correlated Joint condition, followed by Correlated Separate and

Uncorrelated. This can be due to confusion or the fact that salience reduces the contrast between

alternatives. However, we observe patterns across lotteries that hold across treatment conditions.

Decision times on mean-preserving spread choices are significantly larger except in treatment Cor-

related Separate. This suggests that subjects find these choices harder to resolve regardless of

the underlying correlation of lotteries. While subjects rarely choose dominated lotteries, decision

times suggest they find it difficult to discern which lottery is better. Decision time patterns con-

firm that subjects responded differently to lottery types and experimental conditions. We observe

that decision times are largest when we observe significant choice reversals in the Correlated Joint

condition.

Figure 6: Time spent per choice and lottery type
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Table 6: Time use patterns

Correlated Separate Correlated Joint Uncorrelated

(1) E[A]>[B] 1.238 1.882 0.401
(0.706) (0.957) (1.214)

(2) E[A]<[B] 0.910 1.508 -0.012
(0.673) (0.996) (1.333)

(3) E[A]=E[B] 1.250 3.357 1.147
(0.702) (0.856) (1.196)

(4) B FOSD A 4.166 5.307 4.129
(0.944) (0.969) (1.658)

Constant 10.910 12.317 11.026
(0.934) (0.947) (1.399)

H0: (1)=(2) 0.44 0.64 1.04
[0.511] [0.426] [0.312]

H0: (2)=(3) 0.72 11.99 6.07
[0.399] [0.001] [0.018]

H0: (1)=(3) 0.00 8.88 8.79
[0.982] [0.004] [0.005]

H0: (2)=(4) 29.18 29.95 13.02
[0.000] [0.000] [0.001]

H0: (3)=(4) 31.54 9.53 7.76
[0.000] [0.003] [0.008]

Errors clustered at the individual level. s.e. in parentheses, p-values in brackets.

A premise in salience theory, that we exploit in our experimental design, is that the correlation

of outcomes affects the evaluation of lotteries. In particular, our design predicts choice reversals

from choosing lottery B in choice i to lottery A in choice j. We do not know, ex-ante, if this occurs

because the perceived expected utility of both lotteries is closer in choice i or choice j. If subjects

become closer to indifference in choice j, we should expect they will take more time deciding j

relative to choice i. If the opposite holds, we would expect to observe subjects taking more time

in i.12 Figure 7 and Table 7 explore this pattern. They both estimate within-subject variation on

decision times between choice j and choice i across lottery types and treatment conditions.

As mentioned in Section 3, the contrast between lotteries due to salience differs across choice

pairs. It is largest in dominance-ordered lotteries and second largest for mean-preserving spreads.

12We acknowledge that average behavior might be quite different from individual behavior. As we show later, these
patterns do not reflect the behavior of a few subjects.
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We observe a large, while insignificant, reversal in decision time that can be ordered by dominance

in all conditions. We note that salience does not predict different treatments of lotteries in this

case, so we cannot conclude that the observed pattern is due to salience. We are also cautious

about this result because there are only 2 lottery pairs that can be dominance ordered.

Subjects spend around one and a half extra seconds in choice j when the expected value of lottery

B is larger than or equal to that of lottery A. This pattern is observed only in the Correlated Joint

condition. This pattern of behavior is important because it is consistent with the Correlated Joint

condition increasing awareness of the correlation of outcomes. We say this because decision time

reversals are within-subject measures, and therefore they eliminate any common feature affecting

each lottery comparison. The results also suggest that decision time reversals are increasing in the

contrast between lotteries due to salience (see equation (4)). We should remark that the pattern

of decision time reversals already indicates that decision-making is affected by the correlation of

outcomes. We are not aware of previous research reporting this pattern.

Figure 7: Decision time reversals
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Table 7: Decision time in choice j - Decision time in choice i

All E[A]>E[B] E[A]<E[B] E[A]=E[B] B FOSD A

Correlated Separate -0.070 -0.239 -0.361 0.476 -0.420
(0.246) (0.484) (0.490) (0.366) (0.854)

[0.938] [0.896] [0.668] [0.938]
Correlated Joint 0.784 -0.492 1.638 1.585 -1.164

(0.342) (0.664) (0.510) (0.550) (0.924)
[0.896] [0.008] [0.029] [0.668]

Uncorrelated 0.395 0.417 -0.139 0.139 1.844
(0.430) (0.410) (0.569) (0.405) (2.031)

[0.832] [0.938] [0.938] [0.861]

Obs 2596 558 839 838 361

Individual-level clustered standard errors in parentheses. *, **, *** denote significance at the 10%,
5% and 1% levels, respectively, prior to the multiple comparison adjustment. Romano-Wolf p-values
adjusting for multiple comparisons in brackets.

Table 8 investigates if choice reversals are predicted by reversals in decision times. To do this

we augment the regression model in Table 5 to include the change in decision time (in seconds).

We observe that the magnitude and significance of the treatment effects on choice reversals are

unchanged by the inclusion of this variable.

Table 8: Do decision time reversals predict choice reversals?

All E[A]>E[B] E[A]<E[B] E[A]=E[B] B FOSD A

Correlated Separate 0.011 -0.039 0.022 0.038 -0.000
(0.015) (0.024) (0.026) (0.030) (0.033)

[0.274] [0.866] [0.585] [1.000]
Correlated Joint 0.008 -0.028 0.024 0.076 -0.124

(0.015) (0.027) (0.030) (0.027) (0.040)
[0.741] [0.866] [0.012] [0.006]

Uncorrelated 0.000 0.040 -0.001 0.000 -0.051
(0.016) (0.036) (0.044) (0.036) (0.031)

[0.673] [1.000] [1.000] [0.274]
Change in Decision time -0.000 0.003 -0.004 -0.000 -0.001

(0.001) (0.002) (0.002) (0.002) (0.001)
[0.363] [0.129] [1.000] [0.985]

Obs 2596 558 839 838 361

Individual-level clustered standard errors in parentheses. *, **, *** denote significance at the 10%,
5% and 1% levels, respectively, prior to the multiple comparison adjustment. Romano-Wolf p-values
adjusting for multiple comparisons in brackets.
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4.3.2 Are choice reversals preference reversals?

An important remaining question is whether the observed choice reversals can be considered pref-

erence reversals. The answer to this question has paramount implications for welfare analysis (e.g.

Bernheim & Rangel, 2009). As we will show, our experimental design allows us to gain traction in

this important issue.

Alós-Ferrer et al. (2021) derive conditions under which decision times can be used to determine

the direction of preferences. In particular, they show that a revealed preference for lottery A over

lottery B can be deduced if FB(t) q-FSD (q-first order dominates) FA(t) for q = Pr(choice=A)
Pr(choice=B) . This

condition can be expressed as the following:

Pr(choice = A)FA(t)− Pr(choice = B)FB(t) ≥ 0, ∀t ≥ 0 (5)

To give some intuition to this definition, consider the case in which lottery A and lottery B

are chosen with probability one-half. In this case, equation (5) says that if lottery A is preferred

to lottery B, it should be chosen more quickly. The first remark to make is that this statement

applies to individual decision-making. We do not have enough choices per individual to be able to

apply this framework at this level. However, we can exploit the long tradition in economics that

uses random utility models to characterize the behavior of populations. We certainly do not expect

individuals to have the same preferences or the same chronometric function. We, however, appeal

to random assignment to balance individual differences across treatments and lotteries. We take

the results that follow as thought experiments.

The second consideration refers to the empirical implementation of this approach. The state-

ment above is based on exact probabilities and distribution functions. Since our data is finite, we

estimate these probabilities and cumulative distributions. We use a nonparametric kernel density

estimate.13 We estimate a gap function, defined as:

D̂(t) = ̂Pr(choice = A)F̂A(t)− ̂Pr(choice = B)F̂B(t) (6)

where ̂Pr(choice = x) and F̂x(t) for x = A,B are sample analog probabilities and cumulative

distributions. If D̂(t) ≥ 0,∀t ≥ 0, we can deduce that lottery A is revealed preferred to lottery

B. If D̂(t) ≤ 0, ∀t ≥ 0, we can deduce that lottery B is revealed preferred to lottery A. If the

D̂(t) function crosses the X-axis for some value of t, we cannot deduce preferences without making

13We use the Stata akdensity package for this purpose.
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distributional assumptions.

Figure 8 presents estimates of function D̂(t) by treatment, lottery type and choice i and j.

Decision times are presented in log scales. Solid lines correspond to choice i, and dashed lines

correspond to choice j. The patterns in the data are very clear: lottery A is revealed preferred

to lottery B in all choices and treatments except for first-order stochastically dominated choices.

In the latter case, lottery B is revealed preferred to lottery A. Violations of single-crossing are

rare and small. They occur for the mean-preserving spreads when decision times are relatively

faster. To test the qualitative robustness of the observed patterns in section 4.3, we apply response

time techniques to the binary choice data. We divide the sample into choice problems i and j

and, for each treatment and lottery type, make comparisons between the problem types to test

the null hypothesis of first-order stochastic dominance of the latent distributions. Specifically, we

draw upon a test for stochastic dominance proposed by Barrett and Donald (2003) and adapted

by Liu and Netzer (2023) to examine whether Dj(t) q-FSD Di(t) for all t across lottery types and

treatments. While the test was originally developed to assess the validity of a given estimate, for

our purposes, when the null hypothesis of first-order stochastic dominance is rejected, the idea is

that the estimation results do not conform with salience-predicted choice reversals.14 The evidence

that lottery A is revealed preferred to lottery B with a differential intensity within pairs of a lottery

type can be observed for mean-preserving spread choices in the Correlated Joint condition (second

row, third column). We see that lottery A is more clearly found to be superior in choice j than in

choice i. This is consistent with choice reversals being a result of a change in perceived expected

utility in the direction of salience theory. The null hypothesis of first-order stochastic dominance

of the latent distributions cannot be rejected (p = 0.870). The graphs also give us insight into the

presence of preference reversals in the stochastic dominance lotteries. We see that lottery A is more

clearly found inferior in choice j than in choice i in the Correlated Joint condition which contradicts

predictions of salience theory and is further confirmed by the rejection of the null hypothesis of

first-order stochastic dominance (p = 0.003). These tests show that significant coefficients of the

observed choice reversals are qualitatively robust, further highlighting the use of response time

techniques in assessing the validity of a given estimate.15

14The test is one-sided and we separately test Di(t) q-FSD Dj(t) for all t. The validity of a given positive estimate
from Table 5 is tested by the null Dj(t) q-FSD Di(t) for all t, and the validity of a negative estimate is tested by the
null that Di(t) q-FSD Dj(t) for all t. We use the Stata fosdtest command developed by Liu and Netzer (2023) for
this purpose.

15p-values from other comparisons that did not survive significance under conventional levels in Table 5 after
accounting for multiple hypothesis testing can be found in the Appendix in Tables A1 and A2.
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Overall, if we are willing to accept the existence of a representative agent, the patterns of

decision times suggest that choice reversals are preference reversals.
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Figure 8: Function D̂(t) by treatment, lottery type, and lottery choice
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5 Conclusion

We conduct a non-parametric test of the salience theory of choice under risk by examining choice

reversals as a function of the correlation between risky alternatives. Salience theory has clear

predictions for the choice problems we study. Since neither risk attitudes nor the strength of salience

are observed, we explore a wide range of payoffs and lottery types to avoid the possibility of false

negatives. Similarly, we manipulate the framing of options to make the underlying correlation of

risky alternatives evident. Choice reversals occur only when the correlation is made apparent and

for lotteries with equal expected payoffs and lotteries that can be ordered by first-order stochastic

dominance. The choice reversals we observe are consistent with salience theory in the first case

but not in the second. These choices also reject either concave or convex regret theory. We exploit

decision times to explore if choice reversals are consistent with preference reversals. We find decision

time reversals consistent with preference reversals. This suggests that agents are sensitive to the

correlation of outcomes but that correlation is not a salient feature of the decision problem. How

subjects react to the correlation is not always predicted by existing theories.
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Appendix

Table A1: p-values from FOSD test

E[A]>E[B] E[A]<E[B] E[A]=E[B] B FOSD A

Correlated Separate 0.219 0.641 0.550 0.411
Correlated Joint 0.278 0.258 0.870 0.003
Uncorrelated 0.911 0.726 0.772 0.241

Null hypothesis: Dj(t) q-FSD Di(t) for all t.

Table A2: p-values from FOSD test

E[A]>E[B] E[A]<E[B] E[A]=E[B] B FOSD A

Correlated Separate 0.637 0.228 0.118 0.918
Correlated Joint 0.404 0.074 0.013 0.870
Uncorrelated 0.413 0.555 0.626 0.665

Null hypothesis: Di(t) q-FSD Dj(t) for all t.
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EXPERIMENTAL MATERIALS

Instructions

This is an experiment in economic decision making. If you pay attention to these instructions, you

can earn a significant amount of money. Please turn off/silence your phones and put them away;

otherwise, you may be asked to leave. If you have any questions, please raise your hand and we will

come to assist you. Your earnings will depend on the decisions you make during the experiment.

These earnings will be paid in addition to your $10 show-up payment.

In this experiment you will be asked to pick one of two options (Option A or Option B) for 20

choices. At the end of the experiment, 1 of the 20 choices will be randomly selected for payment.

You will then be paid based on the outcome of that choice which will be resolved with a random

drawing of a ball from a bingo cage. Therefore, it is in your best interest that you take every

decision seriously.

First, you will be asked to make choices in 5 practice rounds. During these rounds, you get to see

how your earnings are determined. Your earnings will not depend on the outcomes of the practice

choices – these are meant to illustrate how the experiment works. Then, you will be asked to make

20 choices, of which 1 will be randomly selected for payment.

We will record your selections for all of the 20 choice problems. At the end of the experiment, a

random number will be drawn (between 1 and 20, inclusive) to determine which of the 20 choices

will be used for payment. Given your selection on this choice problem, the outcome is resolved by

a randomly drawn ball from a bingo cage.

This is not a test, and there are no right or wrong answers. For each choice, please choose the

option that you prefer.

Now that you had the opportunity to learn how earnings are determined, you will be asked to make

selections for 20 choices. We will record your selections for all of the 20 choices. At the end of the

experiment, a random number will be drawn (between 1 and 20, inclusive) to determine the choice

for which you will be paid. Given your selection on this choice problem, the outcome is resolved

with a randomly drawn ball from a bingo cage. Since each choice could be selected for payment, it

is in your best interest to take every decision seriously.
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Choice Problems

Practice Choices (% chose A)

Choice 1

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 8 4 1

57% (N=118) 36% (N=114) 60% (N=48)2 0.33 18 22 2

3 0.33 13 13 3

Choice 2

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.25 3 7 1

41% (N=118) 48% (N=114) 52% (N=48)
2 0.25 5 9 2

3 0.25 19 15 3

4 0.25 21 17 4

Choice 3

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.5 2 9 1
39% (N=118) 43% (N=114) 29% (N=48)

2 0.5 21 14 2

Choice 4

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 9 1 1

45% (N=118) 50% (N=114) 60% (N=48)2 0.33 9 16 2

3 0.33 16 17 3

Choice 5

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.1 0 6 1
73% (N=118) 80% (N=114) 71% (N=48)

2 0.9 16 11 2
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Incentivized Choices (% chose A)

Choice 1

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 10 2 1

91% (N=118) 89% (N=114) 92% (N=48)2 0.33 9 14 2

3 0.33 13 11 3

Choice 2

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 13 2 1

88% (N=118) 88% (N=114) 94% (N=48)2 0.33 9 14 2

3 0.33 10 11 3

Choice 3

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 9 1 1

91% (N=118) 84% (N=114) 88% (N=48)2 0.33 10 18 2

3 0.33 14 11 3

Choice 4

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 14 1 1

87% (N=118) 78% (N=114) 94% (N=48)2 0.33 9 18 2

3 0.33 10 11 3

Choice 5

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 9 1 1

69% (N=118) 70% (N=114) 71% (N=48)2 0.33 10 18 2

3 0.33 15 17 3
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Choice 6

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 15 1 1

64% (N=118) 68% (N=114) 65% (N=48)2 0.33 9 18 2

3 0.33 10 17 3

Choice 7

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 8 0 1

65% (N=118) 71% (N=114) 73% (N=48)2 0.33 11 17 2

3 0.33 16 22 3

Choice 8

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 11 0 1

69% (N=118) 75% (N=114) 77% (N=48)2 0.33 8 17 2

3 0.33 16 22 3

Choice 9

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 8 0 1

61% (N=118) 65% (N=114) 71% (N=48)2 0.33 11 18 2

3 0.33 17 24 3

Choice 10

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 11 0 1

67% (N=118) 70% (N=114) 73% (N=48)2 0.33 8 18 2

3 0.33 17 24 3
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Choice 11

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 4 27 1

20% (N=118) 10% (N=114) 6% (N=48)2 0.33 15 5 2

3 0.33 26 16 3

Choice 12

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.33 4 27 1

9% (N=118) 9% (N=114) 4% (N=48)2 0.33 26 5 2

3 0.33 15 16 3

Choice 13

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.5 8 5 1
62% (N=118) 60% (N=114) 71% (N=48)

2 0.5 12 15 2

Choice 14

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.5 12 5 1
71% (N=118) 66% (N=114) 79% (N=48)

2 0.5 8 15 2

Choice 15

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.5 18 15 1
44% (N=118) 49% (N=114) 50% (N=48)

2 0.5 22 25 2

Choice 16

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.5 22 15 1
55% (N=118) 50% (N=114) 50% (N=48)

2 0.5 18 25 2
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Choice 17

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.25 7 1 1

78% (N=118) 74% (N=114) 85% (N=48)
2 0.25 9 3 2

3 0.25 11 17 3

4 0.25 13 19 4

Choice 18

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.25 11 1 1

80% (N=118) 79% (N=114) 77% (N=48)
2 0.25 13 3 2

3 0.25 7 17 3

4 0.25 9 19 4

Choice 19

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.25 1 20 1

29% (N=28) 0% (N=25) 10% (N=29)
2 0.25 7 2 2

3 0.25 13 8 3

4 0.25 19 14 4

Choice 20

State Probability A B Salience Rank Joint Separate Uncorrelated

1 0.25 1 20 1

11% (N=28) 8% (N=25) 0% (N=29)
2 0.25 19 2 2

3 0.25 7 8 3

4 0.25 13 14 4
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Lottery Presentations

50-50 Lotteries

a. Joint

b. Separate
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c. Uncorrelated

25-25-25-25 Lotteries

a. Joint
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b. Separate

c. Uncorrelated
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